Class 5 Ham Radio Technician Course

Leslie Rohde, N7LER • <u>leslie@n7ler.com</u> • Cell Phone: 512.207.0539

1

Review

Keywords

- Automatic Control
- Remote Control
- CTCSS
- DCS
- DTMF
- Third Party Agreement

- Club Station
- Repeater Offset
- Offset Direction
- Band Plan
- Call Sign
- Tactical Call Sign
- Indicator

3

More Keywords

- Control point
- Control operator
- Station Licensee
- ITU, FCC
- VE, VEC
- RMS
- NVIS

- Broadcasting
- One-Way
 Communication
- Repeater
- RACES, ARES
- PEP
- SID, MUF, LUF

Yes, Even More Keywords

- Meteor scatter
- VFO
- RIT / Clarifier
- DMR, D-STAR
- Knife-edge Diffraction

D, E, F1, F2

- AM, FM, SSB
- Auroral backscatter Volts, Amps, Ohms
 - Hertz
 - PEP
 - Henry
 - Tropospheric **Ducting**
 - Farad

Keywords Reloaded

- PTT
- FSK31
- Grid Square
- Rule of 3s
- ISS
- Duty cycle

Rectifier

- FT8
- Relay
- WSJT
- **APRS**
- SDR
- Beacon
- IRLP, VOIP, DMR

OMG, Make it Stop!

- Simplex
- Duplex
- "Reverse" function
- QRM, QRN, QRP
- QSO, QSL, QSY
- Net Control Station
- "Traffic"

- · "Check"
- Picket Fencing
- Flat topping
- Wavelength
- Frequency
 - RF
 - EMF

_

Magic Numbers

- Speed of light
- 2m National Calling Frequency
- 2m repeater offset
- 70cm repeater offset
- 219-220 MHz
- Our ITU region

- 3dB
- 6dB
- 10dB
- -43dB
- License Term
- License Grace Period

Bandwidths

- CW?
- · SSB?
- FM?
- Fast Scan TV?
- Slow Scan TV?

9

3+1 Related Topics

- Interference & Distortion
- Coax
- Safety (Mostly about RF)

Distortion

- A problem with your transmitted signal
- Low battery might cause audio dropouts when you speak
- Microphone gain too high or speaking too loud can cause clipping / flat-topping
 - Overmodulation / Over-deviation
- Narrow filters in the receiver will cause over-deviated parts of your transmission to be cut off

11

Interference

All AC/RF Interferes With Everything All the Time

Your Base Station is Powered by Wall AC

- Can the 60Hz A/C leak into your RF Output?
- Can your RF find its way into your house wiring?
- Can your RF influence other electronics in your house?
- Can other electronics in your house affect your radio?
- Is interference isolated to just your own house?
- What if a (non-HAM) neighbor is interfering with your radio?

What about that nearby FM broadcast station?

13

Powering Your Mobile Station

- Let's start with the engine off all good?
- With the engine running, what does the power look like?
- Alternator output is AC and gets only partially filtered
- What happens to that unfiltered power in your radio?
- Can your RF affect the electronics in your car?

How Do We Fix All This!

- Should we just not use Radios? Are they a societal menace?
- No, we fix all of this with two tools
 - Your new understanding of EM radiation
 - Impedance
 - Shielding
- With impedance we can make filters
 - Low pass
 - High pass
 - Notch

15

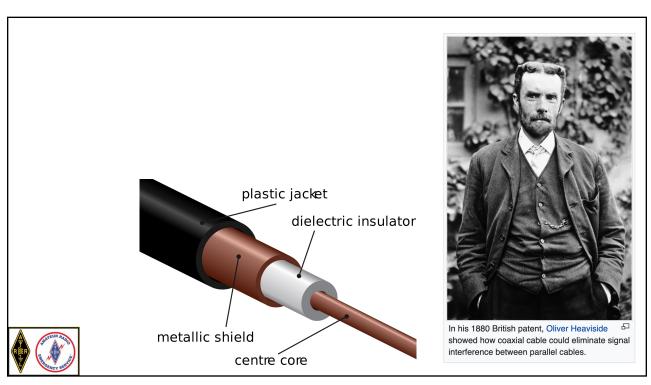
Filters Can Fix Most Interference

- High pass ("Noise blanker" and "power line noise filter")
 - Keeps wall current and alternator noise out of your radio
 - Protect your neighbor's (analog? Really?) TV from your transmitter
- Low pass ("choke")
 - Keeps RF out of power wires and mic cables
 - RF filters will fix landline phones if you happen to find one!
 - Keep nearby military radar from overloading your receiver
- Notch
 - Keep the big FM broadcaster from overloading your receiver
 - Keep your transmitter from overloading badly designed consumer gear
- · What about just looping the wire a few turns?

The One Filter to Rule Them All

Shielding!

17


Grounded Metal Boxes for Devices

Coax is Shielding for Wires

10

Characteristics of Coax

- Impedance
- · Loss vs. Cost
- Connector Types
- Loose connectors are bad!
- Water is even more bad!!

21

Ladder Line – the Coax Alternative

- Much better performance
- Really not convenient!
- Pretty much the reason everyone uses coax

SWR [more correctly **VSWR**]

The RF version of "failure to communicate"

23

SWR

- Standing Wave Ratio
- The measure of "Reflected Power" in a transmission line
- Caused by Impedance Difference Between Source and Sink
- Power reflects from the sink back to the source... recursively!
- Reflected Power Turns into Heat

Reflected Power Can Damage Your Radio

SWR Cheat Sheet

- 1:1 means no reflected power
 - A perfect match!
 - Pretty much doesn't happen
- 1.5:1 is a typical "good" match
- 2:1 is "fair" but marginal (IMHO)
- Anything more and you should fix it
- Modern commercial radios protect you
 - I never rely on that because they will not give me a new radio!

25

Dummy Load – a standard test tool

Safety

27

Physical Safety

- · Summary: Don't be Dumb!
- Hard hat
- Assistant
- Proper climbing gear
- Distance to power wires
 - OMG! Imagine how that got on the test!
- Local codes control
 - There is no "interstate commerce" argument to make this federal

Safety Regulations are LOCAL

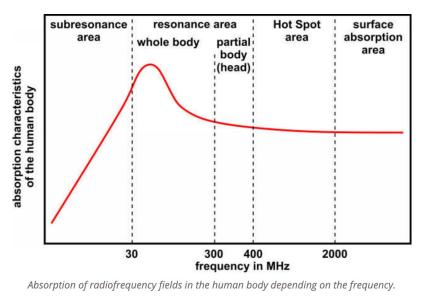
- Federal Law Does Not Reach Your Antenna Tower
- State and City Laws Control

Electrical Power Safety

- Fuses and Circuit Breakers
- Careful Around High Voltages
- Careful of Stored Charge
- Always Have Good Grounds
- Don't Be a Good Ground!

Lightning Loves Your Good Ground!

- Best Grounds are
 - Short
 - Wide
 - Bare
- Short gives less total resistance
- · Wide gives more surface area to carry high frequency RF
- · Bare gives nothing to heat up and catch fire!
- Your radio is also a good (but very expensive!) ground so make your lightning ground better


31

Radio Exposure

- Your Body is a Tuned Circuit
- Different Parts are Tuned Differently
- 50 MHz is the Most Dangerous "Whole Body" Frequency
- Various small parts are sensitive to higher frequencies

33

Controlled vs. Uncontrolled

- This is pretty simple
 - You are in control
 - Your neighbor is not in control
- A theoretical (and theatrical) scenario
 - Suppose Officer Kelly is writing me a speeding ticket
 - I key up my mobile to complain to Director Foster
 - I'm inside my big metal truck with an antenna on top
 - The guy with the ticket book is 4 feet away from a 5/8 whip transmitting 25 watts on 2 meters

Total Exposure

- More Power => More Exposure
- Antenna Gain => More Exposure
- Lower Duty Cycle => Less Exposure
- More Distance => Less Exposure

35

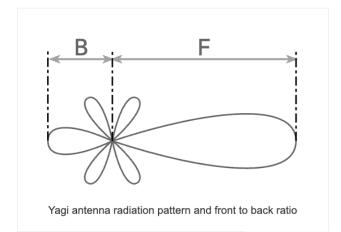
Total Exposure

Power x Gain x Duty Cycle

Distance Squared

Yagi Gain

APPROXIMATE YAGI-UDA ANTENNA GAIN LEVELS


NUMBER OF ELEMENTS	APPROX ANTICIPATED GAIN DB OVER DIPOLE
2	5
3	7.5
4	8.5
5	9.5
6	10.5
7	11.5

dbd = 2.15 dbi

37

Yagi Front to Back Ratio

Front to back ratio (dB) =
$$\log\left(\frac{F}{B}\right)$$

Yagi

APPROXIMATE YAGI-UDA ANTENNA GAIN LEVELS

NUMBER OF ELEMENTS	APPROX ANTICIPATED GAIN DB OVER DIPOLE
2	5
3	7.5
4	8.5
5	9.5
6	10.5
7	11.5

39

Three Ways to be Safe

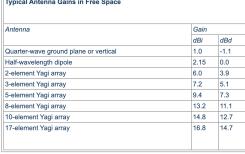
- FCC OET Bulletin 65
- Computer modeling
- Measure with a field strength meter

When is an "RF Exposure Evaluation" Required?

- At VHF and Above
- 50 watts PEP at the antenna

41

Three Ways to Comply


- Measure it with a field strength meter
- Module it in software
- Use FCC OET Bulletin 65

The "Even Finer Print"

Band	Power (W)
160 meters	500
80	500
40	500
30	425
20	225
17	125
15	100
12	75
10	50
6	50
2	50
1.25	50
70 cm	70
33	150
23	200
13	250
SHF (all bands)	250
EHF (all bands)	250

Mode	Duty Factor	Notes
Conversational SSB	20%	Note 1
Conversational SSB	40%	Note 2
Voice FM	100%	
FSK/RTTY	100%	
AFSK	100%	
Conversational CW	40%	
Carrier	100%	Note 3
Note 1: Includes voice character processing. Note 2: Moderate speech proces Note 3: A full carrier is commonly	ssing employed.	·

43

Ionizing vs. Non-Ionizing Radiation

Radio waves Do Not Have Enough Energy "to cause genetic damage"

