Class 2 Ham Radio Technician Course

Leslie Rohde, N7LER • <u>leslie@n7ler.com</u> • Cell Phone: 512.207.0539

If Only Tennis Balls Could Talk

Standard Model of Particle Physics

Converting Frequency to Wavelength

- Using ONLY meters and megahertz
- 300/frequency = wavelength
- 300/wavelength = frequency
- Don't overthink this!

17

For Example • Frequency to Wavelength -15MHz = 300/15 = 20 meters -100MHz = 300/100 = 3 meters

- Wavelength to Frequency
 - 20 meters = 300/20 = 15MHz
 - -2 meters = 300/2 = 150 MHz

Examples of EM interaction

- Light
 - window, mirror, fog, ultraviolet, heat
 - What gives paint it's color?
- RF:
 - metal vs. plastic

- Stealth Paint

- Copper wire vs. plastic fiber optic
- Both at the same time!
 - Transparent Conducting Film

Explain These Effects Using EM Physics

- Cell Phones in Elevators and Tunnels
- Using a Handheld Radio in a Car
- The Door of a Microwave Oven
- Rain and Satellite TV
- Wood Roof vs. Metal Roof
- What About Trees?

- Is not constant
- Is not really about light
- It's the ratio of space and time

The "Constant" is Computed $c = \sqrt{(\varepsilon_0 \mu_0)}$ Epsilon₀ – the electrical permittivity of space Mu₀ – the magnetic permeability of space

23

C is Wildly Non-Constant

Material	Refractive index	Speed of light /ms ⁻¹
Air	1.00	3.0 x 10 ⁸
Water	1.33	2.3 x 10 ⁸
Perspex	1.49	2.0 x 10 ⁸
Glass	1.50	2.0 x 10 ⁸
Diamond	2.42	1.2 x 10 ⁸

Ruining the Magic

- Different colors "bend" at different rates
- Higher frequency (ex: blue) refract faster than lower frequencies (ex: red)

Line of Sight – The Simplest Propagation

- Almost Like Light (Buildings, Trees, etc)
- The Horizon is ~ 30% Further
 Refractive Index is Frequency Dependent
- Really Tall Repeater Towers
- 18+ Satellites and the ISS
- Meteors, Comets, Auroras, and the Moon

33

<text>

Ionospheric layers

- During the day there may be four regions present called the D, E, F1 and F2 regions
- At certain times during the solar cycle the F regions may join
- At night the D, E and F1 regions become very much depleted of free electrons
- Only the E, F1 and F2 regions refract HF waves.
- The D region absorbs or attenuates them
- The F2 region is the most important region for HF because: – it is present 24 hours of the day
 - its high altitude allows the longest communication paths
 - it reflects the highest frequencies in the HF range.

